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Abstract We introduce and analyze an exterior-point method (EPM) for constrained
optimization problems with both inequality constraints and equations. We show that
under the standard second-order optimality conditions the EPM converges to the
primal–dual solution with 1.5-Q-superlinear rate.

Keywords Nonlinear rescaling · Augmented Lagrangian · duality · Primal-dual ·
Multipliers method

1 Introduction

The exterior-point method (EPM) is based on the nonlinear rescaling-augmented
Lagrangian (NRAL) technique, which generalizes the modified barrier-augmented
Lagrangian method [2]. The NRAL method uses the nonlinear rescaling technique
[8,9] for inequality constraints and the augmented Lagrangian [5,11] for equations.
The NR method at each step alternates the unconstrained minimization of the aug-
mented Lagrangian for the equivalent problem in the primal space with both the
Lagrange multipliers and scaling-penalty parameter update. This is equivalent to
solving the primal–dual system of equations. The application of Newton’s method to
the primal–dual system leads to the EPM.
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The EPM eliminates the necessity to find the minimizer of the augmented
Lagrangian for the equivalent problem at each step. Moreover, the EPM has two basic
advantages over the Newton NR method, which consists of using Newton’s method
for finding an approximation of the primal minimizer followed by the Lagrange multi-
pliers update [8] (see also [2,6]). First, instead of finding the primal approximation and
updating the Lagrange multipliers, the EPM performs one Newton step for solving the
primal–dual system. Second, a special way to increase of the penalty-barrier parame-
ter leads to a 1.5-Q-superlinear rate of convergence of the EPM in the neighborhood
of the solution under the standard second-order optimality conditions.

The EPM is the generalization of the primal–dual NR approach (see [3,4,10]) for
problems with both inequality constraints and equations.

The paper is organized as follows. In the next section, we describe the problem and
the basic assumptions. In Sect. 3, we consider a class of constraint transformations and
the augmented Lagrangian for the equivalent problem. In Sect. 4, we formulate the
NRAL method. In Sect. 5, we consider the primal–dual system, describe the EPM and
prove a 1.5-Q-superlinear rate of convergence. We conclude the paper by pointing
out further directions of research.

2 Statement of the problem and basic assumptions

We consider p + q + 1 twice continuously differential functions f , ci, gj: IRn → IR,
i = 1, . . . , p, j = 1, . . . , q and the feasible set

� = {
x : ci(x) ≥ 0, i = 1, . . . , p; gj(x) = 0, j = 1, . . . , q

}
.

The problem consists of finding

x∗ ∈ X∗ = Argmin{f (x)|x ∈ �}.
The Lagrangian L : IRn × IRp

+ × IRq → IR1 for problem (P) is given by formula

L(x, λ, v) = f (x)−
p∑

i=1

λici(x)−
q∑

j=1

vjgj(x).

We assume that I∗ = {i : c(x∗) = 0} = {1, . . . , r} is the active set of inequal-
ity constraints, i.e., ci(x∗) = 0, i = 1, . . . , r. We consider vector functions cT(x) =
(c1(x), . . . , cp(x)), cT

(r)(x) = (c1(x), . . . , cr(x)), gT(x) = (g1(x), . . . , gq(x)) and their Jac-
obians ∇c(x) = J (c(x)) , ∇c(r)(x) = J

(
c(r)(x)

)
, and ∇g(x) = J (g(x)) and assume

that

rank
(∇c(r)(x∗)

∇g(x∗)

)
= r + q < n, (1)

i.e., gradients ∇ci(x∗), i = 1, . . . , r and ∇gj(x∗), i = 1, . . . , q are linearly independent at
the solution. Then there exist two vectors λ∗ ∈ IRp

+ and v∗ ∈ IRq such that the K-K-T
conditions

∇xL(x∗, λ∗, v∗) = ∇f (x∗)− ∇cT(x∗)λ∗ − ∇gT(x∗)v∗ = 0, (2)

λ∗
i ci(x∗) = 0, ci(x∗) ≥ 0, λ∗

i ≥ 0, i = 1, . . . , p, (3)
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gi(x∗) = 0, i = 1, . . . , q (4)

are satisfied.
We assume that

λ∗
i > 0, i = 1, . . . , r. (5)

Let us consider the Hessian of the Largangian of the problem P

∇2
xxL(x∗, λ∗, v∗) = ∇2f (x∗)−

p∑

i=1

λ∗
i ∇2ci(x∗)−

q∑

j=1

v∗
j ∇2gj(x∗).

The sufficient regularity conditions (1) and (5) together with the sufficient condition
for a minimum x∗ to be isolated

〈
∇2

xxL(x∗, λ∗, v∗)ξ , ξ
〉
≥ mξTξ , ∀ξ : ∇c(r)(x∗)ξ = 0, ∇g(x∗)ξ = 0, m > 0 (6)

comprise the standard second-order optimality conditions for the problem P .
Let d : IRp

+ × IRq be the dual function defined by the formula

d(y) = d(λ, v) = inf
x∈IRn

L(x, λ, v).

With the primal problem (P) is associated the dual problem

d(y∗) = d(λ∗, v∗) = max
{
d(λ, v)|λ ∈ IRp

+, v ∈ IRq}
. (D)

The standard second-order optimality conditions guarantee the uniqueness of the
primal–dual solution (x∗, y∗) and the absence of the duality gap, i.e., f (x∗) = d(y∗).

In the following, we use the l∞ vector norm ‖r‖ = max1≤i≤s |ri|, and the corre-

sponding matrix norm ‖Q‖ = max
1≤i≤s

(
s∑

j=i
|qij|

)

.

Later, we will also use the Lipschitz conditions for the Hessians ∇2f (x), ∇2ci(x),
i = 1, . . . , p and ∇2gj(x), j = 1, . . . , q in the neighborhood�ε0(x

∗) = {x : ‖x−x∗‖ ≤ ε0}
of the primal solution x∗.

‖∇2f (x1)− ∇2f (x2)‖ ≤ L0‖x1 − x2‖,
‖∇2ci(x1)− ∇2ci(x2)‖ ≤ Li‖x1 − x2‖, i = 1, . . . , p,
‖∇2gj(x1)− ∇2gj(x2)‖ ≤ Lj‖x1 − x2‖, j = 1, . . . , q.

(7)

We conclude the section with the following lemma, which is a slight modification of
the Debreu theorem [1].

Lemma 1 Let A be a symmetric matrix, B : IRn → IRr, � = diag(λi)
r
i=1 with λi > 0

and there is m > 0 that uTAu ≥ muTu, ∀u : Bu = 0. Then there exists k0 > 0 large
enough that for any 0 < µ < m the inequality

uT(A + kBT�B)u ≥ µuTu, ∀u ∈ IRn

holds for any k ≥ k0.
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3 Constraint transformations and augmented Lagrangian for an equivalent problem

We consider a class � of concave monotone, increasing and twice continuous differ-
entiable functions ψ : −∞ ≤ t0 < t < t1 ≤ +∞ → IR that satisfy the following
properties

1. ψ(0) = 0.
2. ψ ′(t) > 0.
3. ψ ′(0) = 1.
4. ψ ′′(t) < 0.
5. (a) ψ ′(t) ≤ a(t + 1)−1, (b) −ψ ′′(t) ≤ b(t + 1)−2, t ≥ 0, a > 0, b > 0.

Examples of ψ ∈ � can be found in [9].
We will use ψ ∈ � to transform the inequality constraints ci(x) ≥ 0, i = 1, . . . , p

into an equivalent set of constraints.
For any fixed k > 0 the following problem is equivalent to the original problem

(P) due to the properties of ψ ∈ �, i.e., we have

x∗ ∈ X∗
= Argmin{f (x)|k−1ψ(kci(x)) ≥ 0, i = 1, . . . , p; gj(x) = 0, j = 1, . . . , q}.

For a given k > 0, we define the augmented Lagrangian for the equivalent problem
Lk : IRn × IRp

+ × IRq → IR1 by the formula

Lk(x, λ, v) = f (x)− k−1
p∑

i=1

λiψ(kci(x))−
q∑

j=1

vjgj(x)+ k
2

q∑

j=1

g2
j (x). (8)

The first two terms define the classical Lagrangian for the equivalent problem in the
absence of equality constraints (see [8,9] and references therein). The last two terms
coincide with the augmented Lagrangian terms associated with equality constraints
(see [5,11]). We would like to note that for any k > 0 at the solution the augmented
Lagrangian (8) for the equivalent problem has the following useful properties:

1. Lk(x∗, λ∗, v∗) = f (x∗).
2. ∇xLk(x∗, λ∗, v∗) = ∇xL(x∗, λ∗, v∗) = 0.
3. ∇2

xxLk(x∗, λ∗, v∗) = ∇2
xxL(x∗, λ∗, v∗) − k� ′′(0)∇cT

(r)(x
∗)�∗

(r)∇c(r)(x∗) + k∇gT(x∗)
∇g(x∗).

The following lemma is a direct consequence of the standard second-order opti-
mality conditions (1), (5), and (6) and Lemma 1.

Lemma 2 If the standard second-order optimality conditions are satisfied then there is
k0 > 0 large enough such that for any k ≥ k0 the matrix ∇2

xxLk(x∗, λ∗, v∗) is positive
definite, i.e. there is 0 < µ < m that

uT∇2
xxLk(x

∗, λ∗, v∗)u ≥ µuTu, ∀u ∈ IRn. (9)

Let us consider the neighborhood �ε(z∗) = {z = (x, λ, v) : ‖z − z∗‖ ≤ ε} of the
primal–dual solution z∗ = (x∗, λ∗, v∗). If f , ci, gj ∈ C2, then the inequality (9) remains
true for any z = (x, λ, v) ∈ �ε(z∗). In other words, for k ≥ k0 the augmented Lagrang-
ian for the equivalent problem Lk(x, λ, v) is strongly convex with respect to x for any
z ∈ �ε(z∗).
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The problem (P) is a nonconvex optimization problem in x ∈ IRn, in general.
Nevertheless, by Lemma 2 under the standard second-order optimality conditions the
augmented Lagrangian for the equivalent problem Lk(x, λ, v) is strongly convex for
any fixed y : (x, y) ∈ �ε(z∗) and any k ≥ k0. This is not true, in general, for the classical
Lagrangian L(x, λ, v) for the original problem (P) (see [8]).

The property (9) of the Hessian ∇2
xxLk(x, λ, v) remains true in the neighborhood

�ε(z∗) of the primal–dual solution. Therefore, after finding the primal minimizer of
Lk(x, λ, v) for k ≥ k0 large enough, at each step the NR method finds the primal min-
imizer of the strongly convex function followed by the Lagrange multipliers update
by the formulas (14) and (15) described below.

In this paper, we replace the primal minimization and dual update by one step of
Newton’s method for solving the primal–dual system of equations. The properties of
the Hessian ∇2

xxLk(x, λ, v) in the neighborhood �ε(z∗), the smoothness of f (x), ci(x),
i = 1, . . . , p, and gj(x), j = 1, . . . , q, along with the properties 10–50 of the transforma-
tionψ(t) provide important properties of the primal–dual system in the neighborhood
�ε(z∗), which allow to prove a 1.5-Q-superlinear rate of convergence of the EPM.

4 Nonlinear rescaling–augmented Lagrangian multipliers method

In this section we consider the NRAL method for solving problem (P). First, we
define the extended dual domain. For k0 > 0 large enough and small enough δ > 0
we consider the following sets

D(λ∗
(r), k0, δ) = {

(λ(r), k) : |λi − λ∗
i | ≤ kδ, λi ≥ δ, i = 1, . . . , r, k ≥ k0

}
,

D(λ∗
(p−r), k0, δ) = {

(λ(p−r), k) : 0 ≤ λi ≤ kδ, i = r + 1, . . . , p, k ≥ k0
}

,

and

D(v∗, k0, δ) = {
(v, k) : |vi − v∗

i | ≤ kδ, i = 1, . . . , q, k ≥ k0
}

,

We define the extended dual domain as follows

D(y∗, k0, δ) = D(λ∗
(r), k0, δ)× D(λ∗

(p−r), k0, δ)× D(v∗, k0, δ).

Theorem 1 Let f , ci, gj ∈ C2 and the standard second-order optimality conditions (1),
(5), and (6) are satisfied, then there exists k0 > 0 large enough and δ > 0 small enough
that for any (y, k) ∈ D(y∗, k0, δ) the following statements hold.

(1) There exists a vector

x̂ = x̂(y, k) = argmin{Lk(x, y)|x ∈ IRn}
such that

∇xLk(x̂, y) = 0. (10)

(2) Let ŷ = (λ̂, v̂) with

λ̂ = � ′(kc(x̂))λ and v̂ = v − kg(x̂), (11)

where � ′(kc(x̂)) = diag
(
ψ(kci(x̂))

)p
i=1. Then for the pair (x̂, ŷ) the following bound

holds

max
{‖x̂ − x∗‖, ‖ŷ − y∗‖} ≤ ck−1‖y − y∗‖,
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where c > 0 is independent of k ≥ 0.
(3) The augmented Lagrangian for the equivalent problemLk(x, y) is strongly convex

in the neighborhood of x̂.

Theorem 1, which can be proven by modifying the technique used in [2] and [8],
is the foundation for the following NR method. The method alternates the uncon-
strained minimization of the augmented Lagrangian Lk(x, y) in the primal space with
Lagrange multipliers update.

Let the primal–dual approximation (xs, ys) = (xs, λs, vs) be found already. We find
the next approximation (xs+1, ys+1) = (xs+1, λs+1, vs+1) by the following formulas

xs+1 = arg min
x∈IRn

Lk(x, λs, vs) (12)

or, equivalently, we find xs+1 as a solution of the following system of equations

∇f (x)−
p∑

i=1

λs
iψ

′ (kci(x))∇ci(x)−
q∑

j=1

(
vs

j − kgj(x)
)

∇gj(x) = 0. (13)

We find the new Lagrange multipliers by the formulas

λs+1
i = λs

iψ
′(kci(xs+1)), i = 1, . . . , p, (14)

vs+1
j = vs

j − kgj(xs+1), j = 1, . . . , q. (15)

The unconstrained minimization (12) is an infinite procedure. In the next section we
replace the minimization (12) and the Lagrange multipliers update (14) and (15) by
solving a primal–dual system of equations. The application of Newton’s method for
solving the primal–dual system leads to the EPM. The EPM reduces the computational
complexity at each step as compared with the Newton NR method (see [2,6,8]) and
improves the rate of convergence in the neighborhood of the primal–dual solution.

5 Exterior-point method

In this section, we introduce and analyze the EPM.
The important component of the EPM is the merit function, which measures the

distance between the current approximation (x, λ, v) and the solution:

ν(x, y) = ν(x, λ, v) = max

{

‖∇xL(x, λ, v)‖, − min1≤i≤p ci(x),

max1≤i≤q |gi(x)|,
p∑

i=1
|λi||ci(x)|, − min1≤i≤p λi,

} (16)

For a given scaling parameter k > 0 and a starting point z = (x, λ, v) one step of
the NRAL method is equivalent to solving the following primal–dual system for x̂, λ̂,
and v̂

∇xLk(x̂, λ, v) = ∇f (x̂)−
p∑

i=1
ψ ′ (kci(x̂)

)
λi∇ci(x̂)

−
q∑

j=1

(
vj − kgj(x̂)

) ∇gj(x̂) = 0,
(17)
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λ̂−� ′ (kc(x̂)
)
λ = 0, (18)

v̂ − v + kg(x̂) = 0, (19)

where� ′(kc(x̂)) = diag(ψ ′(kci(x̂)))
p
i=1. After replacing in (17) the terms ψ ′ (kci(x̂)

)
λi

by λ̂i and
(
vj − kgj(x̂)

)
by v̂j we obtain an equivalent primal–dual system

∇xL(x̂, λ̂, v̂) = ∇f (x̂)−
m∑

i=1

λ̂i∇ci(x̂)−
q∑

j=1

v̂j∇gj(x̂) = 0, (20)

λ̂−� ′ (kc(x̂)
)
λ = 0, (21)

v̂ − v + kg(x̂) = 0. (22)

Let us consider one Newton step for solving the systems (20)–(22) for x̂, λ̂, and v̂ from
the starting point (x, y) = (x, λ, v). By linearizing the systems (20)–(22) and ignoring
the terms of the second and higher order we obtain the following system for finding
the primal–dual Newton direction (
x,
y) = (
x,
λ,
v)

⎡

⎣
∇2

xxL(·) −∇cT(·) −∇gT(·)
−k�� ′′ (·)∇c(·) Ip 0
k∇g(·) 0 Iq

⎤

⎦

⎡

⎣

x

λ


v

⎤

⎦ =
⎡

⎣
−∇xL(·)
λ̄− λ

−kg(·)

⎤

⎦ , (23)

where ∇c(·) = ∇c(x), ∇g(·) = ∇g(x), � ′′(·) = � ′′ (kc(x)) = diag
(
ψ ′′ (kci(x))

)p
i=1 ,

λ̄ = � ′ (kc(x)) λ, � = diag (λi)
p
i=1 and Ip, Iq are the identity matrices in IRp,p and

IRq,q, respectively. By introducing

Nk(·) =
⎡

⎣
∇2

xxL(·) −∇cT(·) −∇gT(·)
−k�� ′′ (·)∇c(·) Ip 0
k∇g(·) 0 Iq,

⎤

⎦

we can rewrite system (23) as follows

Nk(·)
⎡

⎣

x

λ


v

⎤

⎦ =
⎡

⎣
−∇xL(·)
λ̄− λ

−kg(·)

⎤

⎦ .

Another important component of the EPM is the relation between the scaling param-
eter and the merit function value. We define the relation by the following formula

k = ν(x, λ, v)−0.5. (24)

Now we can describe the EPM step. For a given x ∈ IRn, Lagrange multipliers vectors
λ ∈ IRp

++, v ∈ IRq, and a scaling parameter k > 0 one step of the EPM consists of the
following operations:

1. Calculate the scaling parameter

k = ν(x, λ, v)−0.5. (25)
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2. Find the primal–dual Newton direction from the system

Nk(·)
⎡

⎣

x

λ


v

⎤

⎦ =
⎡

⎣
−∇xL(·)
λ̄− λ

−kg(·)

⎤

⎦ . (26)

3. Find the new primal–dual vector

x̂ := x +
x, λ̂ := λ+
λ, v̂ := v +
v (27)

Very often matrix Nk(·) is sparse, so numerical linear algebra techniques developed
for the interior-point method (see [12]) can be used for solving (26). The following
lemma guarantees that the methods (25)–(27) is well defined.

Lemma 3 If the standard second-order optimality conditions (1), (5), (6), and the
Lipschitz conditions (7) are satisfied then there exists ε0 > 0 small enough that for any
(x, λ, v) ∈ �ε0(x

∗, l∗, v∗) = �ε0 the matrix

Mk(x, λ, v) = ∇2
xxL(x, λ, v)− k∇cT(x)� ′′ (kc(x))�∇c(x)+ k∇gT(x)∇g(x)

is positive definite and therefore the matrix Nk(x, λ, v) = Nk(·) is nonsingular.

Proof Note that Mk(x∗, y∗) = ∇2
xxLk(x∗, y∗), therefore from Lemma follows the

existence of µ > 0 such that

uT
1 Mk(x

∗, λ∗, v∗)u1 ≥ µuT
1 u1, ∀k ≥ k0, ∀u1 ∈ IRn

It follows from the Lipschitz conditions (7) that there exists ε0 > 0 such that for any
triple (x, λ, v) ∈ �ε0 the matrix Mk(x, λ, v) is positive definite.

To prove that Nk(x, λ, v) = N(·) is nonsingular for all ∀ (x, λ, v) ∈ �ε and k ≥ k0
we show that the equation Nk(·)u = 0 implies u = 0, where u = (u1, u2, u3). We can
rewrite the system

⎡

⎣
∇2

xxL(·) −∇cT(·) −∇gT(·)
−k�� ′′ (·)∇c(·) Ip 0
k∇g(·) 0 Iq

⎤

⎦

⎡

⎣
u1
u2
u3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

as follows
(
∇2

xxL(x, λ, v)
)

u1 − ∇c(x)Tu2 − ∇g(x)Tu3 = 0, (28)

− k�� ′′ (kc(x))∇c(x)u1 + u2 = 0, (29)

− k∇g(x)u1 + u3 = 0. (30)

By substituting the value of u2 and u3 from (29) and (30) into (28) we obtain the
following system

Mk(x, λ, v)u1 = (∇2
xxL(x, λ, v)− k∇cT(x)� ′′ (kc(x))�∇c(x)

+k∇g(x)T∇g(x)
)

u1 = 0.
(31)

Since the matrix Mk(x, λ, v) is positive definite then from (31) follows u1 = 0 and,
consequently, due to (29) and (30) we obtain u2 = u3 = 0.

The lemma is proven. ��
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We recall that I∗ = {1, . . . , r} and I0 = {r + 1, . . . , p} are the sets of the active
and the passive inequality constraints, respectively. Let c(r)(x), ∇c(r)(x), λ(r), c(p−r)(x),
∇c(p−r)(x), and λ(p−r) be the vector-functions, their Jacobians and the vector of the
Lagrange multipliers corresponding to the active and passive sets, respectively. Let
L(r+q)(x, λ(r), v) = f (x)−λT

(r)c(r)(x)−vTg(x) be the Lagrangian corresponding to both
the active set and the equations.

We need the following auxiliary lemmas.

Lemma 4 Let the matrix A ∈ IRn,n be nonsingular, ‖A−1‖ ≤ M and ε > 0 small
enough. Then any matrix B ∈ IRn,n such that ‖A − B‖ ≤ ε is nonsingular and ‖B−1‖ ≤
2M.

The proof of Lemma can be found for example in [4].
It follows from the standard second-order optimality conditions (see [7]) that the

matrix

A = A(x∗, λ∗, v∗) =
⎡

⎣
∇2

xxL(r+q)(x∗, λ∗
(r), v∗) −∇cT

(r)(x
∗) −∇gT(x∗)

∇c(r)(x∗) 0 0
∇g(x∗) 0 0

⎤

⎦

has an inverse and there is M > 0 such that

‖A−1‖ ≤ M. (32)

We will use (32) and Lemma 4 to prove the following lemma.

Lemma 5 If the standard second-order optimality conditions (1), (5), (6), and the Lips-
chitz conditions (7), are satisfied then there exists ε0 > 0 small enough such that for any
primal–dual vector z = (x, y) = (x, λ, v) ∈ �ε0 the following hold true

(1) There exist 0 < L1 < L2 such that the merit function ν(z) yields

L1‖z − z∗‖ ≤ ν(z) ≤ L2‖z − z∗‖. (33)

(2) For any z ∈ �ε0 the matrix

A(x, λ(r), v) =
⎡

⎣
∇2

xxL(r+q)(x, λ(r), v) −∇cT
(r)(x) −∇gT(x)

∇c(r)(x) 0 0
∇g(x) 0 0

⎤

⎦

is nonsingular and there exists M > 0 such that the following bound holds

‖A−1(x, λ(r), v)‖ ≤ 2M. (34)

(3) Let Dr = diag(di)
r
i=1 be diagonal matrices with bounded from above elements,

i.e., max{di}r
i=1 = d̄ < ∞. Then there exists k0 > 0 such that for any k ≥ k0 and any

z ∈ �ε0 the matrix

Bk(x, λ, v) =
⎡

⎢
⎣

∇2
xxL(x, λ, v)) −∇cT

(r)(x) −∇gT(x)
∇c(r)(x) 1

k Dr 0
∇g(x) 0 1

k Iq

⎤

⎥
⎦

is nonsingular and there exists M > 0 such that the following bound holds

‖B−1
k (x, λ, v)‖ ≤ 2M. (35)
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Proof Keeping in mind that ν(z∗) = 0 the right inequality (33) follows from the
Lipschitz conditions (7) and the boundedness of�ε0 , i.e., there exists L2 > 0 such that

ν(z) ≤ L2‖z − z∗‖.

From a definition of the merit function (16) we have

‖∇xL(x, λ, v)‖ ≤ ν(z), (36)

−min
1≤i≤p

ci(x) ≤ ν(z), (37)

max
1≤j≤q

|gi(x)| ≤ ν(z), (38)

|λi||ci(x)| ≤ ν(z), i = 1, . . . , p. (39)

Due to the standard second-order optimality conditions there exists τ1 > 0 such that
ci(x) ≥ τ1, i ∈ I0, if z ∈ �ε0 . Therefore, from (39) we get

|λi| ≤ 1
τ1
ν(z) = C1ν(z), i ∈ I0. (40)

Due to the boundedness of �ε0 there exists also τ2 > 0 such that ‖∇c(p−r)(x)‖ ≤ τ2
for all z ∈ �ε0 . Thus, taking into account (36) we have

‖∇xL(r+q)(x, λ(r), v)‖ ≤ ‖∇xL(x, λ, v)‖ + ‖∇cT
(m−r)(x)λ(p−r)‖

≤ ‖∇xL(x, λ, v)‖ + ∑p
i=p−r+1 ‖∇ci(x)‖|λi| ≤ C2ν(z),

(41)

where C2 = 1 + (p − r)C1τ2. Also due to the standard second-order optimality condi-
tions there exists τ3 > 0 such that λi ≥ τ3 for i ∈ I∗ and z ∈ �ε0 . Combining (37)–(39)
we obtain

max
{‖c(r)(x)‖, ‖g(x)‖} ≤ C3ν(z), (42)

where C3 = min{1, 1
τ3

}.
After linearizing ∇xL(r+q)(x, λ(r), v), c(r)(x), and g(x) at the solution (x∗, λ∗

(r), v∗),
we obtain

∇xL(r+q)(x, λ(r), v) = ∇xL(r+q)(x∗, λ∗
(r), v∗)+ ∇2

xxL(r+q)(x∗, λ∗
(r), v∗)(x − x∗)

−∇cT
(r)(x

∗)(λ(r) − λ∗
(r))

−∇gT(x∗)(v − v∗)+ O(n)‖x − x∗‖2,
(43)

c(r)(x) = c(r)(x∗)+ ∇c(r)(x∗)(x − x∗)+ O(r)‖x − x∗‖2, (44)

g(x) = g(x∗)+ ∇g(x∗)(x − x∗)+ O(q)‖x − x∗‖2. (45)

Keeping in mind K-K-T conditions we can rewrite (43)–(45) in a matrix form
⎡

⎣
∇2

xxL(r+q)(x∗, λ∗
(r), v∗) −∇cT

(r)(x
∗) −∇gT(x∗)

∇c(r)(x∗) 0 0
∇g(x∗) 0 0

⎤

⎦

⎡

⎣
x − x∗
λ(r) − λ∗

(r)
v − v∗

⎤

⎦ (46)
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=
⎡

⎣
∇xL(r+q)(x, λ(r), v) +O(n)‖x − x∗‖2

c(r)(x) +O(r)‖x − x∗‖2

g(x) +O(q)‖x − x∗‖2

⎤

⎦ .

Due to the standard second-order optimality conditions the matrix

A(x∗, λ∗
(r), v∗) =

⎡

⎣
∇2

xxL(r+q)(x∗, λ∗
(r), v∗) −∇cT

(r)(x
∗) −∇gT(x∗)

∇c(r)(x∗) 0 0
∇g(x∗) 0 0

⎤

⎦

is nonsingular (see [7], p.231) and there exists M > 0 such that

‖A−1(x∗, λ∗
(r), v∗)‖ ≤ M. (47)

Hence from (46) we have
∥
∥
∥
∥
∥
∥

x − x∗
λ(r) − λ∗

(r)
v − v∗

∥
∥
∥
∥
∥
∥

≤ M max{C2, C3}ν(z)+ O‖z − z∗‖2.

Using (40) and assuming 1/L1 = max {C1, 2M max{C2, C3}} we obtain the left inequal-
ity (33), i.e.,

L1‖z − z∗‖ ≤ ν(z).

The bounds (34) and (35) follow from Lemma 4 and the Lipschitz conditions (7).
Lemma 5 is proven. ��

The NR methods (12), (14), and (15) requires finding an unconstrained minimizer
at each step. The Newton NR method replaces the unconstrained minimization by
finding an approximation of the primal minimizer using Newton’s method [2,6,8].
Several Newton steps are required to find the primal approximation and the updated
Lagrange multipliers. Due to Theorem 1 finding the primal approximation followed
by the Lagrange multipliers update reduces the distance between the current primal–
dual approximation and the solution by a factor 0 < γ < 1, γ = ck−1, i.e., the Newton
NR method has a linear rate of convergence.

The EPM improves the Newton NR method in two directions. First, each step of
the EPM requires only one Newton step for solving the primal–dual system (26).
Second, instead of a linear rate, the EPM converges to the primal–dual solution with
1.5-Q-superlinear rate.

Now we are ready to establish our main result. For the methods (25)–(27) the
following theorem holds.

Theorem 2 If the standard second-order optimality conditions (1), (5), and (6) and
the Lipschitz conditions (7) are satisfied then there exists ε0 > 0 small enough such
that for any primal–dual triple z = (x, λ, v) ∈ �ε0 only one step of EPM (25)–(27) is
enough to obtain a new primal–dual approximation ẑ = (x̂, λ̂, v̂) such that the following
estimation holds

‖ẑ − z∗‖ ≤ C‖z − z∗‖3/2, (48)

where C > 0 is a constant depending only on the problem’s data.
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Proof From Lemmas 3 and 5 follows the existence of ε0 > 0 small enough such that
the matrix Nk(·) is nonsingular for any x ∈ �ε0 . Therefore, the methods (25)–(27)
is executable for any starting point z ∈ �ε0 . Let z = (x, λ, v) ∈ �ε0 be such that
‖z − z∗‖ = ε ≤ ε0.

Due to the formulas (24) for the scaling parameter update and (33), we have

1√
L2
ε−

1
2 ≤ k ≤ 1√

L1
ε−

1
2 . (49)

We rewrite the system (23) specifying the active and the passive constraints sets
⎡

⎢
⎢
⎣

∇2
xxL(·) −∇cT

(r)(·) −∇cT
(p−r)(·) −∇gT(·)

−k�(r)� ′′
(r) (·)∇c(r)(·) Ir 0 0

−k�(p−r)�
′′
(p−r) (·)∇c(p−r)(·) 0 Ip−r 0

k∇g(·) 0 0 Iq

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣


x

λ(r)

λ(p−r)

v

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−∇xL(·)
λ̄(r) − λ(r)
λ̄(p−r) − λ(p−r)
v̄ − v

⎤

⎥
⎥
⎦ . (50)

First, we consider separately the system corresponding to the passive constraints.
After rearranging the terms we obtain

λ̂(p−r) := λ(p−r) +
λ(p−r) = λ̄(p−r) + k�(p−r)�
′′
(p−r) (·)∇c(p−r)(·)
x.

Therefore, for any i ∈ I0 we have

λ̂i = λi +
λi = ψ ′(kci(x))λi + kψ ′′(kci(x))λi∇ci(x)T
x.

We recall that ψ ′(t) ≤ a(t + 1)−1, −ψ ′′(t) ≤ b(t + 1)−2, t ≥ 0, a > 0, b > 0. Also due
to the standard second-order optimality conditions and the boundedness �ε0 there
exists η1 > 0, η2 > 0, η3 > 0 such that ci(x) ≥ η1, ‖∇ci(x)‖ ≤ η2, ‖
x‖ ≤ η3, i ∈ I0 for
any (x, λ, v) ∈ �ε0 . Using the formula (24) for the scaling parameters update, keeping
in mind that |λi| ≤ ε for i ∈ I0 and (49) we obtain

|λ̂i| ≤ a
kη1

λi + bη2η3

kη2
1

λi ≤ C4ε
3
2 , i ∈ I0, (51)

where C4 = a
√

L2
η1

+ b
√

L2η2η3
η2

1
.

Now we concentrate on the analysis of the primal–dual system that corresponds to
the active inequality constraints and equations. The first, the second, and the fourth
rows of the system (50) are equivalent to

⎡

⎣
∇2

xxL(·) −∇cT
(r)(·) −∇gT(·)

−k�(r)� ′′
(r) (·)∇c(r)(·) Ir 0

k∇g(·) 0 Iq

⎤

⎦

⎡

⎣

x

λ(r)

v

⎤

⎦

=
⎡

⎣
−∇xL(·)+ ∇cT

(p−r)(·)
λ(p−r)

λ̄(r) − λ(r)
v̄ − v

⎤

⎦ .
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After multiplying the second row of the system by
[−k�(r)� ′′(·)]−1 and dividing the

third one by k we obtain
⎡

⎢
⎢
⎣

∇2
xxL(·) −∇cT

(r)(·) −∇gT(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1

0

∇g(·) 0 1
k Iq

⎤

⎥
⎥
⎦

⎡

⎣

x

λ(r)

v

⎤

⎦ (52)

=
⎡

⎢
⎣

−∇xL(·)+ ∇cT
(p−r)(·)
λ(p−r)

[
−k�(r)� ′′

(r)(·)
]−1

(λ̄(r) − λ(r))

−g(·)

⎤

⎥
⎦ .

Keeping in mind that ci(x∗) = 0 for i ∈ I∗ and using the Lagrange formula we have

(λ̄i − λi)(−kλiψ
′′(·))−1 = (

λiψ
′(kci(·))− λiψ

′(kci(x∗))
)
(−kλiψ

′′(·))−1

= λikψ ′′(ξi)(ci(·)− ci(x∗))(−kλiψ
′′(·))−1 = −ψ ′′(ξi)(ψ

′′(·))−1ci(·),
where ξi = kθici(·)+ k(1 − θi)ci(x∗) = kθici(·), 0 < θi < 1. Therefore, the system (52)
is equivalent to

⎡

⎢
⎢
⎣

∇2
xxL(·) −∇cT

(r)(·) −∇gT(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1

0

∇g(·) 0 1
k Iq

⎤

⎥
⎥
⎦

⎡

⎣

x

λ(r)

v

⎤

⎦

=
⎡

⎢
⎣

−∇xL(·)+ ∇cT
(p−r)(·)
λ(p−r)

−� ′′
(r)(ξ)

[
� ′′
(r)(·)

]−1
c(r)(·)

−g(·)

⎤

⎥
⎦ ,

where � ′′
(r)(ξ) = diag(ψ ′′(ξi))

r
i=1, or

B(·)
zb = b(·),
where

B(·) =

⎡

⎢
⎢
⎣

∇2
xxL(·) −∇cT

(r)(·) −∇gT(·)
∇c(r)(·)

[
−k�(r)� ′′

(r)(·)
]−1

0

∇g(·) 0 1
k Iq

⎤

⎥
⎥
⎦ ,

b(·) =
⎡

⎢
⎣

−∇xL(·)+ ∇cT
(p−r)(·)
λ(p−r)

−� ′′
(r)(ξ)

[
� ′′
(r)(·)

]−1
c(r)(·)

−g(·)

⎤

⎥
⎦

and 
zb = (
x,
λ(r),
v).
We compare the Newton directions
zb with those generated by Newton’s method

applied to the Lagrange system of equations that corresponds to the active constraints
and equations

∇L(r+q)(x, λ(r), v) = ∇f (x)− ∇cT
(r)(x)λ(r) − ∇gT(x)v = 0, (53)
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c(r)(x) = 0, (54)

g(x) = 0. (55)

By linearizing the equations (53) and (54) the linear system to find the primal–dual
Newton direction is given by

⎡

⎣
∇2

xxL(r+q)(·) −∇cT
(r)(·) −∇gT(·)

∇c(r)(·) 0 0
∇g(·) 0 0

⎤

⎦

⎡

⎣

x′

λ′

(r)

v′

⎤

⎦ =
⎡

⎣
−∇xL(r+q)(·)
−c(r)(·)
−g(·)

⎤

⎦

or

A(·)
z′
a = a(·),

where

A(·) =
⎡

⎣
∇2

xxL(r+q)(·) −∇cT
(r)(·) −∇gT(·)

∇c(r)(·) 0 0
∇g(·) 0 0

⎤

⎦ , a(·) =
⎡

⎣
−∇xL(r+q)(·)
−c(r)(·)
−g(·)

⎤

⎦

and 
z′
a = (
x′,
λ′

(r),
v′). The new primal–dual approximation is obtained by the
formulas

x̂′ = x +
x′, λ̂′
(r) = λ(r) +
λ′

(r), v̂′ = v +
v′ (56)

or

ẑ′ = z +
z′
a.

Let us estimate ‖ẑ(r+q)−z∗
(r+q)‖, where ẑ(r+q) = (x̂, λ̂(r), v̂) is generated by (25)–(27).

ẑ(r+q) − z∗
(r+q) = z(r+q) +
zb − z∗

(r+q) = z(r+q) +
z′
a +
zb −
z′

a − z∗
(r+q)

= ẑ′
(r+q) − z∗

(r+q) −
z′
a +
zb.

Therefore,

‖ẑ(r+q) − z∗
(r+q)‖ ≤ ‖z′

(r+q) − z∗
(r+q)‖ + ‖
z′

a −
zb‖. (57)

First let us estimate ‖
z′
a − 
zb‖. Due to Lemma 5 there exist inverse matrices

A−1 = A−1(·) and B−1 = B−1(·) and for a = a(·), b = b(·) we have

‖
z′
a −
zb‖ = ‖A−1a − B−1b‖ = ‖A−1a − B−1a + B−1a − B−1b‖

= ‖
(

A−1 − B−1
)

a + B−1(a − b)‖ ≤ ‖A−1 − B−1‖‖a‖ + ‖B−1‖‖a − b‖
≤ ‖A−1‖‖A − B‖‖B−1‖‖a‖ + ‖B−1‖‖a − b‖. (58)

We consider the following matrix

A − B =
⎡

⎢
⎣

∑p
i=r+1 λi∇2ci(x) 0 0

0 − 1
k

[
� ′′(·)]−1 0

0 0 1
k Iq

⎤

⎥
⎦ .

Due to the formulas (24), (42) and (49) we obtain

|kci(·)| ≤ C3L2√
L1

ε
1
2 , i ∈ I∗ (59)
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and hence there is η4 > 0 such that

|ψ ′′(kci(·))| ≥ 1
η4

. (60)

Due to the boundedness of �ε0 there exists τ4 > 0 such that for z ∈ �ε0 we have

‖∇2ci(x)‖ < τ4, i ∈ I0. (61)

Therefore, keeping in mind the formulas (24), (49), and (61) we have

‖A − B‖ ≤ max
{
(τ4(p − r))ε,

√
L2η4ε

1
2 , ε

1
2

}
= max

{√
L2η4, 1

}
ε

1
2 (62)

for 0 < ε ≤ ε0 small enough.
Let’s now estimate ‖a − b‖ :

‖a − b‖ =

∥
∥
∥
∥
∥
∥
∥

−∇xL(r+q)(·)+ ∇xL(·)− ∇cT
(p−r)(·)
λ(p−r)

−c(r)(·)+ (
� ′′(ξ)

) [
� ′′(kc(r)(·)

]−1 c(r)(·)
0

∥
∥
∥
∥
∥
∥
∥

. (63)

For the first component we obtain using (51)

‖ − ∇xL(r+q)(·)+ ∇xL(·)− ∇cT
(p−r)(·)
λ(p−r)‖

= ‖ − ∇xL(r+q)(·)+ ∇xL(r+q)(·)− ∇cT
(p−r)(·)λ(p−r) − ∇cT

(p−r)(·)
λ(p−r)‖
= ‖∇cT

(p−r)(·)(λ(p−r) +
λ(p−r))‖ = ‖∇cT
(p−r)(·)λ̂(p−r)‖ ≤ η2C4ε

3
2 .

Next we estimate the second component of (63). Using the Lagrange formula for
i ∈ I∗ we have

∣
∣
∣
∣

(
ψ ′′(ξi)

ψ ′′(kci(·)) − 1
)

ci(·)
∣
∣
∣
∣ ≤

∣
∣
∣
∣
ψ ′′(ξi)− ψ ′′(kci(·))

ψ ′′(kci(·))
∣
∣
∣
∣ |ci(·)|

≤ |ψ ′′′(ξ̄i)||ξi − kci(·)|
|ψ ′′(kci(·))| |ci(·)| ≤ |ψ ′′′(ξ̄i)||kci(·)(θi − 1)|

|ψ ′′(kci(·))| |ci(·)|,

where ξ̄i = θ̄iξi + k(1 − θ̄i)ci(·) = kci(·)(θ̄iθi + 1 − θ̄i). Due to (59) there exist η5 > 0
such that for i ∈ I∗

|ψ ′′′(ξ̄i)| ≤ η5.

Thus, taking into consideration the formulas (24), (41), (49), (59), and (60) we obtain
for i ∈ I+

|ψ ′′′(ξ̄i)||kci(·)(1 − θi)|
|ψ ′′(kci(·))| |ci(·)| ≤ η4η5(1 − θ)C2

3L2
2L

− 1
2

1 ε
3
2 = C5ε

3
2 ,

where θ = min1≤i≤r θi.
Finally combining the formulas (24), (34), (35) (41), (42), (49), (58), and (62) we

have

‖
y′
a −
yb‖ ≤ ‖A−1‖‖A − B‖‖B−1‖‖a‖ + ‖B−1‖‖a − b‖

≤ 4M2 max
{√

L2η4, 1
}

max{C2, C3}L2ε
3
2

+2M max{η2C4, C5}ε 3
2 = C6ε

3
2 . (64)
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Due to the quadratic convergence of Newton’s method for solving Lagrange sys-
tem of equations that corresponds to the active constraints and equations (see [7],
Theorem 9, p.247), we obtain

‖ẑ′
(r+q) − z∗

(r+q)‖ ≤ C0ε
2, (65)

where ẑ′
(r+q) = (x̂′, λ̂′

(r), v̂′) defined by (56) and z∗
(r+q) = (x∗, λ∗

(r), v∗).
Therefore, combining (57), (64), and (65) we obtain

‖ẑ(r+q) − z∗
(r+q)‖ ≤ ‖ẑ′

(r+q) − z∗
(r+q)‖ + ‖
y′

a −
yb‖

≤ C0ε
2 + C6ε

3
2 ≤ C7ε

3
2 . (66)

Finally combining (51) and (66) for ẑ = (x̂, λ̂, v̂) we have

‖ẑ − z∗‖ ≤ max{C4, C7}ε 3
2 = Cε

3
2 = C‖z − z∗‖3/2.

Proof of Theorem 2 is complete. ��
Remark 1 To make the matrix N(·) nonsingular for any (x, λ, v) we can regularize the
Hessian of the Lagrangian L(x, λ, v).

Nα(·) =
⎡

⎣
∇2

xxL(·)+ αIn −∇cT(·) −∇gT(·)
−k�� ′′ (·)∇c(·) Ip 0
k∇g(·) 0 Iq

⎤

⎦ , (67)

where In is an identity matrix in IRn,n. It is possible to show that a certain choice of
regularization parameter α does not compromise the rate of convergence and at the
same time guarantee that the method is well defined for any (x, λ, v).

6 Concluding remarks

The local convergence analysis of the EPM emphasizes the fundamental difference
between the primal–dual NR approach (25)–(27) and Newton NR method (see [2,
6,8]), which is based on sequential unconstrained minimization of Lk(x, λ, v) in x
by Newton’s method followed by the Lagrange multipliers update. The latter method
converges with a fixed scaling parameter, keeps stable the Newton area for the uncon-
strained minimization and allows the observation of the “hot start” phenomenon
[2,6,8], when from some point on one Newton step for primal minimization is enough
for the Lagrange multipliers update. To improve the rate of convergence one has to
increase the scaling parameter from step to step. However, the unbounded increase of
the scaling parameter leads to substantial numerical difficulties, since the Newton area
for unconstrained minimization degenerates to a point. Moreover, in the framework
of the NR method, any rapid increase of the scaling parameter after the Lagrange mul-
tipliers update leads to a substantial increase of the computational work per update
because several Newton steps are required to get back to the NR trajectory.

The situation is fundamentally different with the EPM (25)–(27) in the neighbor-
hood of the primal–dual solution. The rapid increase of the scaling parameter does not
increase the computational work per step. Just the opposite: by using (25) for the scal-
ing parameter update we obtain the Newton direction for the primal–dual system (26)
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close to the Newton direction for the Lagrange system of equations that corresponds
to the active inequality and equality constraints. This enables us to prove 1.5-Q-super-
linear rate of convergence of the EPM. At the same time, the EPM requires solving
only one linear system (26) per step. Therefore, the EPM is more efficient in the
neighborhood of the solution than Newton NR method.

We would like to emphasize the importance of the standard second-order optimal-
ity conditions for performance of the EPM. They are critical for the efficiency of the
EPM and enable us to prove a 1.5-Q-superlinear rate of convergence. Preliminary
numerical results obtained so far are encouraging [3,4,10]. The EPM for NLP with
inequality constraints was numerically implemented and a number of NLP problems
from COPS and CUTE sets have been solved with high accuracy (see [4,10]). For
all solved problems the “hot start” phenomenon predicted in [8], has been system-
atically observed. For most problems just a few Lagrange multipliers updates are
required before each Newton step of EPM improves the accuracy by at least one
digit. Recently, the EPM was implemented using linear algebra developed in [12].
The numerical results show that the EPM can find solutions with very high accuracy
in certain cases when an interior-point method experiences difficulties [3].

The next important step is to analyze the global convergence of the EPM for non-
convex problems. This requires a modification of the methods (25)–(27). We also plan
to conduct extensive numerical experiments and work on implementation issues.
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0324999.

References

1. Debreu, G.: Definite and semidefinite quadratic forms. Econometrica 20, 295–300 (1952)
2. Goldfarb, D., Polyak, R., Scheinberg, K., Yuzefovich, I.: A modified barrier-augmented Lagrang-

ian method for constrained minimization. Comput. Optim. Appl. 14 (1), 55–74 (1999)
3. Griva, I.: Numerical experiments with an interior-exterior point method for nonlinear program-

ming. Comput. Optim. Appl. 29 (2), 173–195 (2004)
4. Griva, I., Polyak, R.: Primal–dual nonlinear rescaling method with dynamic scaling parameter

update. Math. Prog. 106 (2), 237–259 (2006)
5. Hestenes, M.R.: Multipliers and gradient methods. J. Optim. Theory Appl. 4 (5), 303–320 (1969)
6. Melman, A., Polyak, R.: The Newton modified barrier method for QP Problems. Ann. Oper. Res.

62, 465–519 (1996)
7. Polyak, B.T.: Introduction to Optimization. Software Inc., New York (1987)
8. Polyak, R.: Modified barrier functions theory and methods. mathe program 54, 177–222 (1992)
9. Polyak, R., Teboulle, M.: Nonlinear rescaling and proximal-like methods in convex optimization.

Math. Program 76, 265–284 (1997)
10. Polyak, R., Griva, I.: Primal–dual nonlinear rescaling method for convex optimization, J. Optim.

Theory Appl. 122 (1), 111–156 (2004)
11. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher Opti-

mization, (ed) pp. 283–298. Academic Press, London (1969)
12. Vanderbei, R.: Symmetric quasidefinite matrices. SIAM J. Opti. 5, 100-113 (1995)


	1.5-Q-superlinear convergence of an exterior-point method for constrained optimization
	Abstract
	Introduction
	Statement of the problem and basic assumptions
	Constraint transformations and augmented Lagrangian for an equivalent problem
	Nonlinear rescaling--augmented Lagrangian multipliers method
	Exterior-point method
	Concluding remarks
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


